

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA

Melissa Klingenberg, PhD

Hydrogen Program

Develop infrastructure technology for a H₂ economy

Air Products and Chemicals, Inc. (APCI)

Hydrogen Separation Hydrogen Sensors

CTC

- Program Management
- Hydrogen Delivery
 - CH₄/H₂ co-transport
 - H₂ separation
 - Delivery approaches
- Advanced Materials
 - Characterization
 - Testing/Analyses
 - Predictive Modeling
- Sensors

EDO Fiber Science

High Pressure/High Strength Composite Material Development and Prototyping

Resource Dynamics Corporation (RDC)

Tradeoff/Sensitivity Analyses of Hydrogen Delivery Approaches

SRNL

Pipeline Life Management Program

Aims to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development

Funding and Duration

- FY04 funding
 - DOE: \$2,943,232
 - Contractor: \$738,965
- Award notification
 - September 1, 2004
- Contract start date
 - November 23, 2004
- Contract end date
 - March 31, 2006

Hydrogen Regional Infrastructure Program in Pennsylvania

Objectives

- Capture data pertinent to H₂ delivery in PA
- Identify opportunities for safe/reliable delivery options

H₂ Delivery

- Co-transportation of H₂ and natural gas in existing pipelines
- Separation of H₂ from H₂/natural gas blends at the point of use
- Examine most attractive options for H₂ delivery approach(es) in PA

Hydrogen Regional Infrastructure Program in Pennsylvania

New Material Development

 Evaluate novel material approaches for pipelines and compressed gas storage tanks

Hydrogen Sensor Development

 Evaluate the ability of H₂-specific sensors to determine %H₂ in feed gas (including gas blends) and ppm-level H₂ for leaks

H₂ Delivery Approach

- Assess current gas pipeline materials and operational characteristics
 - Identify construction materials used in the US and PA according to:
 - Feed gas composition

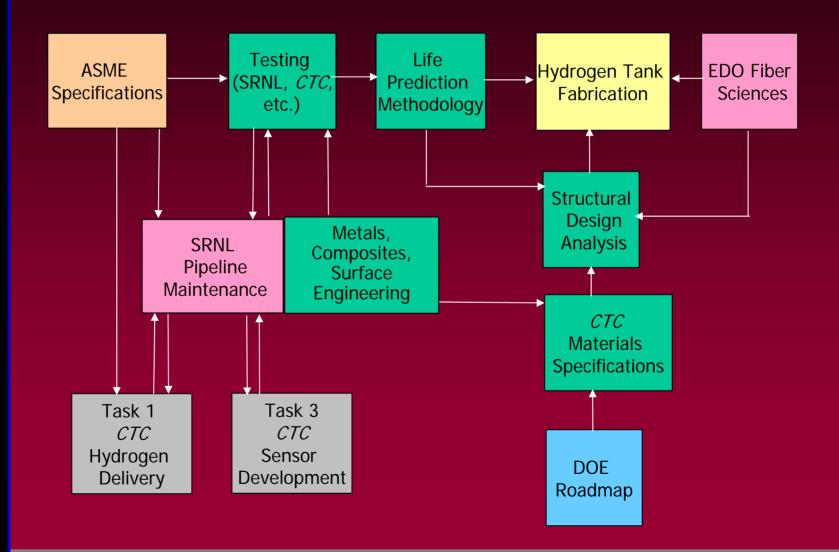
- Pressure Flow Rate

Ambient conditions

- Temperature
- Identify and quantify tradeoffs between alternative H₂ delivery approaches in PA
 - RDC
 - Examine economic, risk, and technology tradeoffs
 - Use data collection, economic analysis and sensitivity analysis
 - Recommend best approaches for delivering hydrogen from production facilities to end users
 - CTC
 - Provide inputs to assist with economic model
 - Natural gas demands
 - Co-transport deliver scenarios

H₂ Delivery Approach

- Investigate separation at point of use
 - Based on co-transport of natural gas and hydrogen
- Examine delivery scenarios and resulting effects on separation technology selection
 - Test and determine suitability of available technologies
- Assess current separation technologies
 - Organic membranes
 - Pressure Swing Absorption (PSA)
 - Vacuum Swing Absorption (VSA)
 - Palladium alloy membranes
 - Cryogenic distillation
 - External field-based approaches (thermal gradient, centrifuge)
 - Ceramic membranes
 - Zeolite membranes



Materials Approach

- Benchmark current or potential material issues
- Develop test protocols and perform materials testing
- Develop lifing and survivability model
 - Identify models and input parameters for lifing/survivability
 - Incorporate test data into lifing/survivability models
 - Investigate existing materials test data
- Simulate pipeline lifetime based on model data
- Investigate composite tanks
- Fabricate and test prototype off-board storage tank

Materials Approach

Sensors Approach

- Define H₂ sensor performance requirements
- Access available sensor technologies
- Create test protocols for testing sensors against performance requirements
- Test priority sensor technologies in H₂ and gas blends
 - Identify effects of:
 - Contaminants
 - Humidity
 - Pressure
 - Temperature
 - Assess calibration and maintenance capability of sensors

Hydrogen Delivery Accomplishments

- Identified H₂ co-transport issues in existing natural gas system
 - Hydrogen production and injection location
 - Hydrogen/natural gas transport ratio as a function of demand
 - End user demands
 - Utility companies and PA Public Utility Commission
 - Gas-blend related issues and current pipeline failure modes
 - Potential effects of pressure drop losses in pipelines for various hydrogen/natural gas blends
- Performed research and demographic studies for PA H₂ demand scenarios
 - Performed sample calculations
 - Estimated required refueling station quantities and capacities
- Completed report on existing natural gas pipeline materials and associated operational characteristics

Hydrogen Delivery Accomplishments

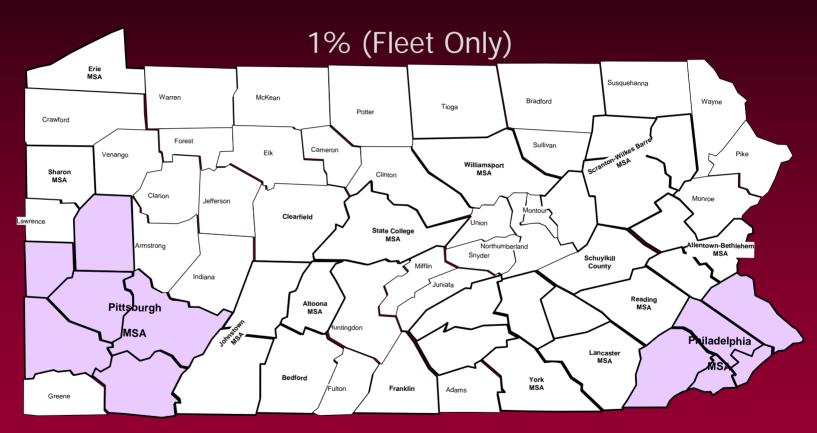
- Identified transmission and distribution pipeline characteristics for the US and PA
 - Materials
 - Failures (leaks)
 - Significant corrosion issues in PA vs. US
 - Year of Construction
 - Operation parameters
- Identified operation concerns
 - State regulations and tariffs (BTU content)
 - Wobbe Index
 - Hydrogen loss cost to the end user
 - Odorants
 - Thermodynamic properties
 - Piping system layout

Comparison of US and PA Transmission Pipeline

Category	US	PA		
Material	Percent of Total Miles	Percent of Total Miles		
Steel	99.73	98.5		
Other	0.27	1.5		
Total	100 (291,704 mi)	100 (9,501 mi)		
Decade of Installation	Percent of Steel Miles	Percent of Steel Miles		
Unknown	2.9	0		
Installed Pre-1940	5.1	4.5		
Installed 1940-1949	8.7	9.3		
Installed 1950-1959	24.5	28.7		
Installed 1960-1969	24.6	19.5		
Installed 1970-1979	10.8	7.8		
Installed 1980-1989	9.3	16.6		
Installed 1990-1999	10.6	10.2		
Installed 2000-Present	3.5	3.4		
Leaks	% Leak Repairs	% Leak Repairs		
Corrosion Leaks	44.7	71.8		
Mat'l/Welds Leaks	19.4	18.8		
Other/Forces Leaks	35.9	9.4		
Based on 2003 Data				

Comparison of US and PA Distribution Pipeline

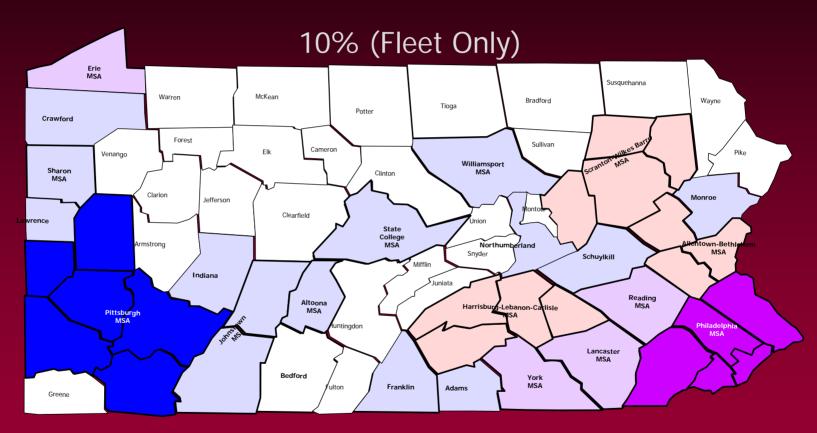
Category	US	PA		
Material	Percent of Total Miles	Percent of Total Miles		
Steel	50.4	55		
Plastic	45.7	35		
Other	3.9	10		
Total	100 (1,097,994 mi)	100 (40,584 mi)		
Leaks	% Leak Repairs	% Leak Repairs		
Corrosion	35	62.8		
Outside Force	8.6	16.8		
Third Party	17.9	4.1		
Material Defect	6.3	2.4		
Construction Defect	3	0.5		
Other Causes	29.2	13.4		
Based on 2003 Data				



Hydrogen Delivery Accomplishments: H₂ Delivery Options

- Estimated potential feedstocks required and availability
 - PA Electricity, natural gas, biomass, coal, petcoke, gasoline, methanol
- Developed production scenarios
- Developed data on existing infrastructure
 - Roads, pipelines, power plants, refineries, coal mines, biomass sources
- Developed spreadsheets to perform cost analysis
- Discussed H2A model with NREL
- Testing H₂A component model
- Refining spreadsheets to perform cost analysis

Hydrogen Delivery Accomplishments: PA H₂ Demand Scenarios


0-5,000

15,001-20,000

30,001-100,000 100,001-200,000 200,001-500,000

500,001+

Hydrogen Delivery Accomplishments: PA H₂ Demand Scenarios

15,001-20,000

500,001+

0-5,000

Hydrogen Delivery Accomplishments: PA H₂ Demand Scenarios

0-5,000

15,001-20,000

500,001+

Hydrogen Delivery Accomplishments: Separation

- Made assumptions to evaluate technologies
 - Composition: $80\% \text{ NG} / 20\% \text{ H}_2$
 - Typical NG composition
 - H₂ feedstock at 50, 100, or 200 psig
 - Hydrogen refueling station conditions
 - Pressure 6000 psig
 - Demand 100 kg/day H₂
 - Tolerances -
 - 1 ppm CO
 - 500 ppm inert species
 - <10 ppb H₂S
 - Loss via incomplete recovery in a separation device or to natural gas consumers

Hydrogen Delivery Accomplishments: Separation

- Identified and reviewed candidate separation technologies
 - PSA
 - VSA
 - Organic membranes
 - Combinations: Organic membranes + temperature swing absorption (TSA), Organic membranes + PSA or VSA
 - Palladium alloy membranes
 - Selectively reacting H₂ with hydride + TSA to regenerate
 - Cryogenic distillation
 - External field-based approaches (thermal gradient, centrifuge)
 - Ceramic and Zeolite membranes
- Modeling PSA recovery
 - Performed modeling for PSA using SIMPAC software
 - Results show good recovery of 85+% at 99.95+% purity
 - Suggests that organic membrane addition will not greatly improve recovery/purity
 - Considering modeling palladium membrane (ASPEN?)
 - Interested due to its selectivity to H₂

Hydrogen Delivery Accomplishments: Separation - PSA

99.95+% Hydrogen Product

CO,N₂

C1
C3,

CO₂,

heavies

Molecular Sieve

Activated Carbon

Silica Gel

Hydrogen Feed 20% H₂


Materials Accomplishments

- Performed baseline assessments related to hydrogen delivery materials
 - Evaluated material issues based on
 - Failures
 - Pressures
 - Blends
 - Prevalence in infrastructure
- Assessed currently available high pressure composite tanks
 - Investigating where manufacturing costs can be reduced
 - Builds on 15+ years experience with Navy materials work

Materials Accomplishments

	Metals		Composites		Plastics	
Materials	High Strength Low Alloy	Low Carbon Steels	Metal Liner	Plastic Liner	PE	PVC/Other
Prevalence in Infrastructure	Future high pressure applications	Existing NG Pipeline Distribution 50.4% Transmission >99%	Future Applications (pipe, tank, miscellaneous hardware)		Existing NG Pipeline Distribution 45.7% Transmission <1%	
Pressure (psi)	0 - 10,000	0-1,200	6,600**	10,000**	<100*	<100*
Possibility of Distortion under cyclic conditions	N/A		Possibile		Possible pressures thus	
Potential or Existing Failures	H ₂ embrittlement, fatigue, and corrosion		H ₂ embrittlement, fatigue, and corrosion	H ₂ permeation, embrittlement, and fatigue	H₂ permeation, embrittlement, and fatigue	
Issues related to use	Joining/welding		Joints and thermal expansion/fatigue at interface in hybrid structures		Joii	nts
* Typical pressures, although up to 125 psi have been documented, **Pressures related to composite tanks currently available						

Materials Accomplishments: Composites

Company	Operational Pressure	Structural Material	Liner Material	Service	
Manufacturer	Burst Test Pressure	Structural Material	Liner Material	Life	
Dynetek	3,000-6,500psi/	wound layer of carbon fiber	seamless aluminum liner	15 years	
Industries Ltd.	6,600- 14,300psi	reinforced composite material			
Quantum	5,000- 10,000psi	multiple layers of carbon fiber/epoxy laminate and a	seamless, one piece, permeation resistant, cross-linked ultra-high molecular weight polymer liner	15 years	
Technologies	15,000- 23,500psi	proprietary external protective layer for impact resistance			
Lincoln	7,000- 10,000psi	high strength carbon fiber blended with tough glass filaments placed on the liner.	plastic high density polyethylene (HDPE) liner that is permeation	20 years	
Composites	11,750- 23,000psi	Then an energy absorbing material followed by a fiberglass outer layer	and embrittlement resistant		

Materials Accomplishments: Lifing and Survivability Model

- Identified material models and supporting material database needs
 - Hydrogen permeation evaluation
 - Identification material properties degradation
- Identified hydrogen embrittlement model voids
 - Finite element programs available
 - Focus on a pre-existing crack and its progression
 - Provide in-depth understanding of the failure process
 - Hydrogen embrittlement analysis packages not available
- Enumerated modeling needs
 - Engineering model to analyze hydrogen embrittlement
 - Numerical scheme to implement the engineering model and evaluate the material

Materials Accomplishments: Lifing and Survivability Model

- Pursuing statistical analysis of hydrogen embrittlement
 - Identified a purely empirical approach (Yokobori)
 - Reviewed prior experiments and analysis (Davies)
 - Identified statistical analysis needs
 - Weibull distribution for tensile failure, fatigue failure, distribution for different materials
- Taking damage mechanics approach for material evaluation
 - Bypassing details in microscopic scale
 - Focusing on overall material performance or material merits
 - Introducing damage parameters to quantify material degradation
 - Used to study the failure of materials with complex structures
 - Includes composite materials and large engineering structures
 - Not previously adopted in the modeling of hydrogen embrittlement

Materials Accomplishments: Lifing and Survivability

Diffusion Measurement

Material Degradation Measurement

Quantification of Damage Model

Pipeline Component Service Conditions

Commercial Finite Element Software

Evaluation of Component Performance

Concurrent Technologies Corporation

Initial Tests Needed for Models

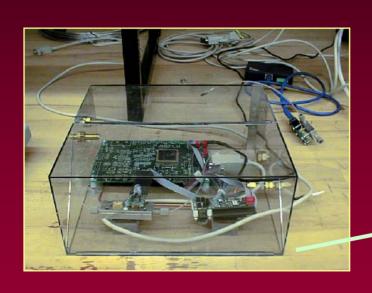
Material	Test Type	Prior Exposure	Test Environment	Testing Source
A42	Tensile	None, H2 - 7 MPa,1 hr	Air, 1 atm, RT; H ₂ , 7 MPa, RT	SRNL
A42 & weld, HAZ	Tensile	None	Air, 1 atm, RT	SRNL
A42	Creep Rupture	None, H2 - 7 MPa,1 hr	Air, 1 atm, RT; H ₂ , 7 MPa, RT	TBD
Weld, HAZ	Creep Rupture	None, H2 - 7 MPa,1 hr	Air, 1 atm, RT; H ₂ , 7 MPa, RT	TBD
A42	Fatigue, R=0.7, 0	None, H2 - 7 MPa,1 hr	Air, 1 atm, RT; H ₂ , 7 MPa, RT	TBD
Weld, HAZ	Fatigue, R=0.7, 0	None, H2 - 7 MPa,1 hr	Air, 1 atm, RT; H ₂ , 7 MPa, RT	TBD
A42 – Tube	Cyclic, 0 to 1000 psig	None	H ₂ , RT	TBD
A42 – Tube	Burst	None	H ₂ , RT	TBD

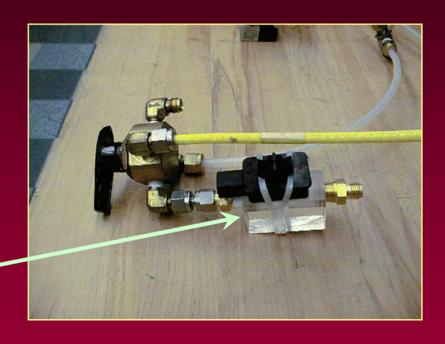
Sensor Accomplishments

- Created performance requirements for sensors to be evaluated
- Conducted technology assessment of sensors
- Identified and purchased two COTS and one pre-commercial sensor(s)
 - COTS
 - H2 Scan portable hydrogen leak detector
 - Nanomix Sensation Technology wireless hydrogen sensor
- Created test protocols for testing sensors

Sensor Performance Requirements

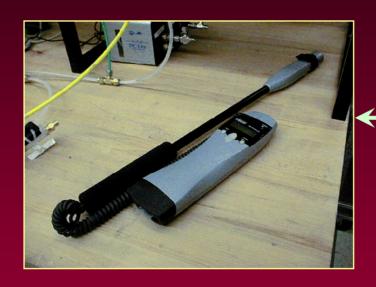
Parameter	Range	Units
Component specificity	H_2	-
Oxygen requirement	not required	-
Operating range	0.01 – 5	%
Chemical interference		
CO	>0.5	ppmv
H₂S	>0.01	ppmv
Humidity	5% - dewpoint	-
VOC (diesel exhaust)	>10 ppmv	-
Precision	+/- 5	%
Calibration drift (short)	< 2.5 (24 hrs)	%
Calibration drift (long)	<10 (3 months)	%
Electrical	noise < 100	ppmv
Response time (> 10 % change)	< 2	sec
Full range (0.1-5%)-time-constant	< 5	sec
Ambient temperature range	-200	° F
Ambient pressure range	0.8 – 1.2	atm
Calibration/validation requirement	One point NIST-Ref	-
Sensor size (w/electronics)	2x2x1	inches
Alarm levels (if process required)		
Level 1	10,000	ppmv
Level 2	20,000	ppmv
Level 3	30,000	ppmv
Level 4	40,000	ppmv
Level 5	50,000	ppmv
Sensor-to-electronics distance	< 6	feet




Sensor Test Parameters/Protocol

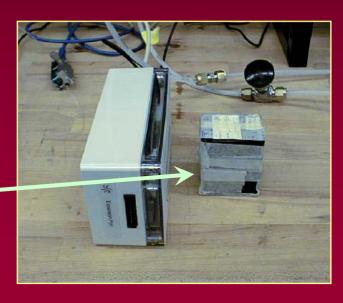
	What	How	Details	Eval. Criteria
Α	Qualification:			
			Flowing challenges	+/- 5% of LEL
1	O2 effect	Cycled between N2 and air (1% H2)	30 minute challenges or until plateau is achieved	< 5% drift over 1 hr
2	Linearity from 0.01 to 4% H2	H2 challenges in air at 10 points from	Flowing challenge; Random sequence	Std dev < 5% of LEL
	<u> </u>	0.01% to 4% H2	30 minute challenges	31d dev < 370 of EEE
		H2 challenges in air at 5 points from 0.01% to 4% H2	Flowing challenge	
3	<u>Hysteresis</u>		Sequenced from low to high; soak at high for 1 hr and reverse sequence; 30 minute challenges	< 10 %
4	Statistical repeatability	Repeat linearity testing (#4) every other day over 6 days	Statistical regression analysis	+/- 10 %
5	Inter-sensor variability of responses between sensors	Repeat linearity testing (#4) on 4 sensors	Statistical regression analysis	+/- 10 %
6	Effect of ambient temperature variation on the sensor response	Repeat linearity testing (#4) while module is at constant temperature and changed from -30 °C to 60°C	Sensor can be in a sealed box immersed in a constant temperature liquid or in a heated/cooled oven	< 10 % within +/- 30° C range of room temperature TBD outside range
7	Effects of natural gas constituents as interferences to H2 sensing	H2 challenges in natural gas at 5 points from 0.01% to 4% H2	Followed by retesting with stds in air.	< 10 %
8	Effects of controlled ambient air contaminants as interferences to H2 sensing	4% H2 in air diluted 50% with 20% CO in N2, 100% CO2,	Each contaminant is followed by retesting with stds in air.	< 10%
В	Functional Behavior			
1	Effects of controlled ambient air contaminants as interferences to H2 sensing	4% H2 in air diluted 50% with N2 passed through 100% motor car exhaust, N2 passed through motor oil (devoid of aerosol), N2 passed through anti-freeze, N2 passed through food products	Each contaminant is followed by retesting with stds in air.	TBD
2	Effects of uncontrolled ambient air contaminants as interferences to H2 sensing	Operation of unit exposed to ambient air near a farm or factory for 6 days	Followed by retesting with stds in air.	TBD

Purchased Sensors (Applied Sensors)



Early version —

Current testing system



Purchased Sensors (H₂ Scan & NanoMix)

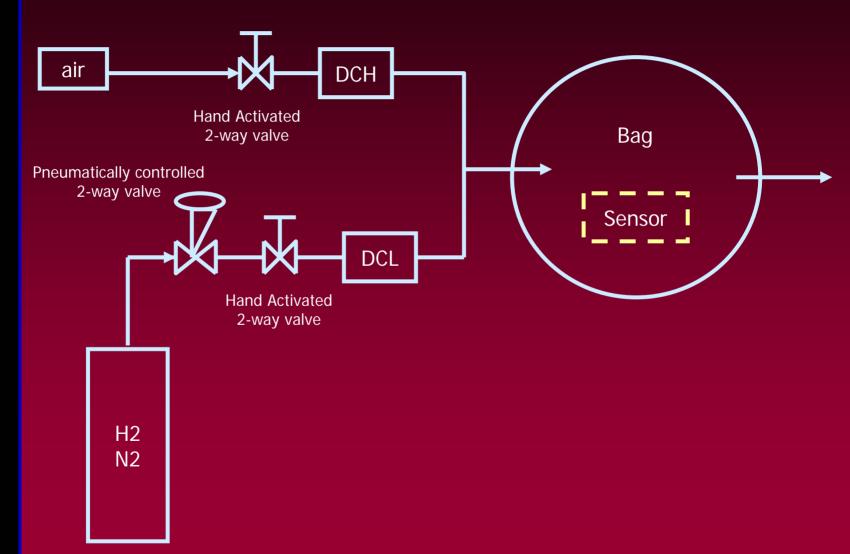
H2 Scan Hand held w/extended tip

Nanotube w/wireless



Test Platform/Equipment

Computer Interface


8-channel Datalogger

Automatic Sequencer

Testing Setup

Plans

- Evaluate production needs given different demand scenarios
- Evaluate transportation/delivery options
- Complete evaluation of separation technologies
- Determine effects of H₂ on infrastructure materials
- Identify key test data gaps
- Perform lifetime simulation on common pipeline material
 - Input test data into a Lifing and Survivability model
 - Input existing test data into Lifing and Survivability model
- Construct and test prototype tank
- Evaluate COTS H₂ sensors for implementation in transportation and delivery applications
- Complete laboratory test evaluation of 3 sensors
 - Per established test plan/protocol
- Perform limited field testing

Questions

